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Outline

• Problem statement & motivation (9 slides)

• Prior works (5 slides)

• System design (21 slides)

• Extensibility (9 slides)

• Results (12 slides)

• Conclusion (2 slides)
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Problem Statement 1/4
• Parallel system size is expanding

• Percentage of top 500 systems with greater 
than 1,025 processors:
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Problem Statement 2/4

• Scalability on hardware end is great

• Cluster management software does not scale 
as well as the hardware does

• Computer industry not motivated to solve 
this problem

• Home-grown management software will need 
to be re-done as larger clusters are installed
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Problem Statement 3/4

• Many resource management systems exist

• Portable Batch System (PBS) is popular

• Provide services to run user jobs, monitor 
cluster status, collect output, etc.

• Transient connections are inefficient and 
not scalable

• Larger clusters require more effective 
solutions
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Problem Statement 4/4

• Scalable Systems Software (SSS) effort

• Part of DOE SciDAC program

• Desire is to more effectively utilize next 
generation computational resources

• Goal is to develop component based open 
source cluster management software

• Modularity is a key goal, allows for 
specialized components
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7



Node Monitoring 1/4
• What is monitoring?

• Act of observing a signal

• Either reactive or periodic in nature

• What is node monitoring?

• Observe hard drive status, CPU usage, fan 
speed, power supply temp, etc.

• collect this information for all cluster nodes

• node state is important
8



Node Monitoring 2/4

• Why is node monitoring necessary?

• Large clusters utilize batch systems to 
schedule and run user jobs

• Effective scheduling requires accurate node 
status

• Presents a single system image to a system 
administrator
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Node Monitoring 3/4

• Our node monitor is called Fountain

• Three distinct design goals

• Fault tolerant to handle node failures

• Low processing requirements

• Scalable to next generation hardware

• What was our motivation?

• Provide cluster scheduler with node state
10



Node Monitoring 4/4

• Prior works

• Ganglia - University of California Berkeley

• Supermon - Los Alamos National Lab

• NWPerf - Pacific Northwest National Lab
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Ganglia 1/2

• Designed for clusters and grids

• Relies on multicast listen/announce protocol

• Configurable publishing thresholds for 
different monitoring metrics

• Three components: clients, gmetad, gmond

• Novelty: minimal configuration

• Drawback: no cluster scheduler interface
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Ganglia 2/2

Ganglia federates multiple clusters together using a tree of point-to-point connec-
tions. Each leaf node specifies a node in a specific cluster being federated, while
nodes higher up in the tree specify aggregation points. Since each cluster node con-
tains a complete copy of its cluster’s monitoring data, each leaf node logically rep-
resents a distinct cluster while each non-leaf node logically represents a set of
clusters. (We specify multiple cluster nodes for each leaf to handle failures.) Aggre-
gation at each point in the tree is done by polling child nodes at periodic intervals.
Monitoring data from both leaf nodes and aggregation points is then exported using
the same mechanism, namely a TCP connection to the node being polled followed by
a read of all its monitoring data.

4. Implementation

The implementation consists of two daemons, gmond and gmetad, a command-
line program gmetric, and a client side library. The Ganglia monitoring daemon
(gmond) provides monitoring on a single cluster by implementing the listen/
announce protocol and responding to client requests by returning an XML represen-
tation of its monitoring data. gmond runs on every node of a cluster. The Ganglia
Meta Daemon (gmetad), on the other hand, provides federation of multiple clus-
ters. A tree of TCP connections between multiple gmetad daemons allows monitor-
ing information for multiple clusters to be aggregated. Finally, gmetric is a
command-line program that applications can use to publish application-specific
metrics, while the client side library provides programmatic access to a subset of
Ganglia’s features.

4.1. Monitoring on a single cluster

Monitoring on a single cluster is implemented by the Ganglia monitoring daemon
(gmond). gmond is organized as a collection of threads, each assigned a specific task.
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Fig. 1. Ganglia architecture.
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Supermon 1/2

• Designed for high speed monitoring

• Three components: kernel module, node 
daemon, data aggregator

• Each uses symbolic expressions (S-
expressions from LISP)

• Novelty: very high speed

• Drawback: no memory usage monitoring, no 
cluster scheduler interface
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Supermon 2/2
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of Supermon and their relationships.

Figure 2. Supermon output from the kernel
module for the S command.
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NWPerf

• Designed for low-impact, high resolution 
monitoring

• Goal is to monitor behavior of user 
applications

• Three components: lightweight client per 
node, server side packet handler, external 
storage system

• Drawback: no scheduler interface, targeted 
more towards analysis purposes
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Fountain Design 1/3

• Four separate components

• server (head node)

• master daemon (head node)

• slave daemon (each compute node)

• client utilities (anywhere)
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Fountain Design 2/3

Fountain server

Fountain master daemon

Fountain slave daemon

Persistent socket connections

Transient socket connections

Fountain client utilities
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Fountain Design 3/3

• Components communicate using XML 
messages over TCP sockets

• Both persistent and transient sockets

• Required environment:

• Linux

• TCP connected hosts
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Slave daemon

• Slave Fountain daemons run on each compute 
node in the cluster, how they start is not 
important

• Arranged in a rigid topology by the master 
daemon (more info later)

• Two purposes

• collect monitored metrics

• report neighboring daemon failures
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Monitored Metrics

• Static: CPU, memory, swap space

• Dynamic: CPU usage, available memory, 
available swap

• Collected from the /proc file system in Linux

• node state is NOT collected, more on this 
later
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Slave daemon

• Each slave daemon has:

• a persistent connection to a 
parent daemon

• up to n persistent 
connections to child 
daemons

• number of children depend 
on tree topology config
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Slave daemon

• Monitoring metrics are collected on demand 
by Fountain server (more on this later)

• Otherwise slave daemons are essentially idle

• sleep in a select system call waiting for I/O

• Promotes low node overhead
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Master daemon

• Same functionality as slave daemon

• Added requirement of maintaining topology 
of slave daemons

• We chose a tree topology

• Promotes good scalability

• Recovering from node failures is somewhat 
difficult
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Master daemon
• Fountain tree topology is a complete n-ary 

topology

• Each node has up to n children

• Each level is full except the bottom level

• Bottom level is filled left to right
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Master daemon

• Fountain uses three algorithms to maintain 
the tree topology in the presence of failures

• Tree establishment

• Tree recovery

• Tree rebuilding
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Tree Establishment
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Tree Recovery 1/3
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Tree Recovery 2/3

29

0

1 2 3

16 5 6 7 8 9 10 11 12

13 14 15



Tree Recovery 3/3

• Why wait for all neighbors 
to report failure?

• assume only the parent 
reports failure

• what happens to nodes 
13, 14, and 15 when 
nodes 1 and 4 fail 
concurrently?
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Tree Rebuilding
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Fountain server 1/5

• Acts as a gateway between Fountain daemons 
and other SSS components

• Presents a single system image to clients

• stores monitoring info from daemons

• Responds to client requests

• It has a very flexible interface by utilizing the 
SSS Node Monitor and Node Object spec
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Fountain server 2/5
Request:

<Envelope>
  <Body actor="samm">
    <Request action="Query">
      <Object>Node</Object>
      <Get name="NodeId"></Get>
      <Get name="NodeState"></Get>
      <Where name="NodeState" op="eq">Down</Where>
    </Request>
  </Body>
</Envelope>

Response:
<Envelope>
  <Body actor="root">
    <Response action="Query">
      <Count>2</Count>
      <Total>34</Total>
      <Data name="NodeList" type="xml">
        <Node>
          <NodeId>m20</NodeId>
          <State>Down</State>
        </Node>
        <Node>
          <NodeId>m34</NodeId>
          <State>Down</State>
        </Node>
      </Data>
      <Status>
        <Value>Success</Value>
        <Code>000</Code>
        <Message>2 node(s) found</Message>
      </Status>
    </Response>
  </Body>
</Envelope>
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Fountain server 3/5
Request:

<Envelope>
  <Body actor="root">
    <Request action="Query">
      <Object>Node</Object>
      <Get name="NodeId"></Get>
      <Get name="Arch"></Get>
      <Get name="OpSys"></Get>
      <Get name="State"></Get>
      <Where name="State" op="eq">Up</Where>
      <Get name="Configured/Processors"></Get>
      <Where name="Configured/Processors" op="ge">2</Where>
      <Get name="Available/Memory" units="MB"></Get>
      <Where name="Available/Memory" op="ge" units="MB">128</Where>
    </Request>
  </Body>
</Envelope>

Response:
<Envelope>
  <Body actor="root">
    <Response action="Query">
      <Count>1</Count>
      <Total>34</Total>
      <Data name="NodeList" type="xml">
        <Node>
          <State>Up</State>
          <NodeId>m17</NodeId>
          <Arch>ppc</Arch>
          <OpSys>Linux</OpSys>
          <Configured>
            <Processors>2</Processors>
          </Configured>
          <Available>
            <Memory units="MB">819.5</Memory>
          </Available>
        </Node>
      </Data>
      <Status>
        <Value>Success</Value>
        <Code>000</Code>
        <Message>1 node(s) found</Message>
      </Status>
    </Response>
  </Body>
</Envelope>
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Fountain server 4/5
• Utilizes a node monitor database

• Actually a C++ map container from STL

• Node’s hostname is the key, object to hold 
node statistics is the value

• Three ways to populate this database

• Query response from Fountain daemons

• Parsing nodelist file

• Discovering a server-specific data source
35



Node Query 1/2

• Fountain server periodically sends a query 
request to the master daemon

• master responds w/ query response

• message contains info for all daemons

• Node state calculated from query response

• Three states: up, down, unavailable
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Node Query 2/2
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Extensibility 1/2

• Thus far, only node specific data sources have 
been discussed

• Other potential sources for monitoring 
information exist

• Parallel file systems (PVFS, GPFS, Lustre)

• Network information (gigabit ethernet, 
InfiniBand, Myrinet)

• Such information could be beneficial
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Extensibility 2/2

• Fountain currently has two modules to 
extend its monitoring capabilities

• InfiniBand module

• Cray XT3 module

• Integrated into the Fountain server

• In some cases, node daemon functionality is 
disabled because it does not make sense
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InfiniBand 1/5

• Modern interconnection architecture

• 3rd most popular on 27th top 500 list

• behind Myrinet (2nd) and gigabit ethernet 
(1st)

• Utilizes a bidirectional serial bus

• Links can be aggregated: 1x, 4x, 12x

• 12X double data rate (DDR) can carry 60 
gigabits/second
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InfiniBand 2/5
• Open InfiniBand Alliance (OpenIB)

• Open source IB software stack

• Supports HCAs from multiple vendors

• Interface accepted into Linux kernel

• We desired two features

• Discover IB network

• Poll each discovered node for port counter 
information

41



InfiniBand 3/5

• Motivation for this module came from SC|05

• Desire was to make a visual map of nodes

• Overlay performance & error counters

• Extend this idea to clusters

• User can overlay network topology to 
monitor job status
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InfiniBand 4/5
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Request:

<Envelope>
  <Body actor="samm">
    <Request action="Query">
      <Object>Node</Object>
      <Get name="NodeId"></Get>
      <Get name="Network"></Get>
    </Request>
  </Body>
</Envelope>

Response:
<Node>
  <NodeId>0002c90200003448</NodeId>
  <Arch>Infiniband</Arch>
  <Network type="Infiniband">
  <Device>
    <ID>0002c90200003448</ID>
    <Vendor>Redswitch</Vendor>
    <Lid>35</Lid>
    <Description>MT23108 InfiniHost Mellanox Technologies</Description>
    <Type>HCA</Type>
    <Ports>
    <PortCount>2</PortCount>
    <Port>
      <Number>1</Number>
      <RemoteDevice port="2">0002c90109fb36b8</RemoteDevice>
      <SendBytes units="bytes">648</SendBytes>
      <ReceiveBytes units="bytes">576</ReceiveBytes>
      <SendRate>
        <Bytes>39.865</Bytes>
        <Packets>0.554</Packets>
      </SendRate>
      <ReceiveRate>
        <Bytes>39.865</Bytes>
        <Packets>0.554</Packets>
      </ReceiveRate>
      <SymbolErrors>60</SymbolErrors>
      <Counters>true</Counters>
      <LastSeen>Mon Jun 5 15:09:38 2006</LastSeen>
      <Width>4X</Width>
      <Speed units="Gigabits/sec">2.5</Speed>
    </Port>
    </Ports>
  </Device>
  </Network>
</Node>



InfiniBand 5/5
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Cray XT3 1/2

• Massively parallel processing (MPP) system

• Developed by Sandia and Cray Inc.

• Contains between 200 and up to 30,000 
processors

• Built-in management software presents a 
single system image
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Cray XT3 2/2

• Fountain module for XT3 acts as a wrapper

• Discovers number of installed processors

• Updates number of available processors 
periodically

• Provides this information to the cluster 
scheduler

• Not yet feature complete

• Created to test feasibility of this application
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Test Environment 1/3

• Two test environments

• Scink: 64 node dual AMD Athlon MP2200 
cluster with 100 Mbit ethernet

• 4pack: 34 node heterogeneous PowerPC 
G4 Macintosh cluster

• Both run Debian Linux

• Larger configurations are tested with 
multiple Fountain daemons per node
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Test Environment 2/3

• Following results are of interest

• Time to query various configurations of 
Fountain daemons

• Time to recovery tree topology from single 
and multiple failures

• Time to rebuild tree topology (worst case)

• Quantify compute node overhead 
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Test Environment 3/3

• Why are these results important?

• Original design goals were: fault tolerance, 
low overhead, good scalability

• Scalability: time to query should scale 
somewhat linearly with number of nodes

• Fault tolerance: recovery time should not 
depend on number of nodes
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Node Query Results 1/2
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Node Query Results 2/2
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Tree Recovery 1/3

• Recovering from a single node failure

• Measured as time when first node reports 
failure, until replacement node is connected

• We expect tree topology with larger 
degree to require more time

• Good scalability is important here, failure 
rates will rise as cluster sizes increase
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Tree Recovery 2/3
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Tree Recovery 3/3
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Tree Rebuilding 1/2

• This algorithm is a last ditch effort if recovery 
is not possible

• Requires master daemon to talk with each 
slave daemon in the system (EXPENSIVE)

• Performance numbers here are the result of a 
forced rebuild
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Tree Rebuilding 2/2
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Node Overhead
• Design goal was low node overhead

• Compute nodes especially

• Can be quantified in terms of CPU usage and 
network bandwidth

• Several parameters can affect these numbers

• Location in tree topology

• Fountain server query interval

• Size of tree topology
57



Node Overhead
(in terms of query interval and tree size)
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Future Work

• Consider use of threads and non-blocking 
sockets

• Consider multiple master daemons and 
server processes for fault tolerance

• Find optimal tree topology degree based on 
cluster information

• Improve Goanna administrative GUI
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Conclusion

• Fountain is a node monitor for the Scalable 
Systems Software project

• It utilizes a component based design to pull 
information from each node in the cluster

• Our major research contribution is the use of a 
rigid tree topology of persistent daemons

• Promotes good scalability

• Recovering from failures depends on the 
topology degree
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Questions?


